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ON THE EFFECT OF ORTHOTROPY IN A

CRACKED CYLINDRICAL SHELL*

F. Erdogan, M. Ratwani, and U. YUceoglu

Lehigh University, Bethlehem, Pa.

Abstract. A pressurized cylindrical shell containing a
longitudinal crack is considered. It is assumed that the
material has a special orthotropy, namely that the shear modu-
lus of the sheet may be evaluated from the measured Young's
moduli and the Poisson's ratios rather than being an independ-
ent material constant. Two examples, one for a mildly ortho-
tropic (titanium) and the other for a strongly orthotropic
(graphite) material approximately satisfying the condition of
special orthotropy are given. The results show that the stress
intensity factors are rather strongly dependent on the degree
of orthotropy.

SOME REMARKS ON THE FORMULATION OF THE PROBLEM

A detailed treatment of the linear bending theory of aniso-

tropic shallow shells may be found in [1-3]. Assuming that

through a proper superposition the problem has been reduced to

a perturbation problem with the crack surface tractions as the

only external loads, in an eight order theory the differential

equations for an orthotropic shallow cylindrical shell may be

expressed as

2 2
D1V1 4W(x'X 2) 2 F(X',x 2 ) = 0

ax1

4 2hE2a 2

V2 4F(x1,x 2) h+ R w(x 1 ,x2 ) = 0 , (l.a,b)
@x1
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where a,R,h are the dimensions of the crack and the shell (see

the insert in Figure 1),

x1 = X/a , x2  = Y/a , (2)

F is a stress function and w is the displacement component nor-

mal to the surface. The operators V14 and V24 are defined by

4 
4  G 4 E 44  [ 12 a 2 a

1 4 + 2[v 2 + 2(1-v1 2 ) E 2 2 E 4 '
1  1  2 2

4 34 E2 _ 4  E2  a4
V2  + 2 2G 22 + El x2 4  (3.a,b)

ax1  ax ax 1 ax

The notation for the orthotropic elastic constants are defined

by the following stress strain relations:

EII l 1 (I- v 1c 2 2 ) ' E22 - E2 (c 2 2 - v2 1 1
) '

S1 V1  2  3
12 H2. '12 ' E l  E2  1 E h/[12(1-v2)] '

(4.a-e)

where x1 and x2 are the principal directions of orthotropy and

are taken respectively along the axial and circumferential

directions. The stress and moment resultants are related to

F and w through the usual expressions (see [3] or [4]).

In solving the problem, for example by expressing F and w

in terms of appropriate Fourier integrals, (1) may be reduced

to a system of two fourth order ordinary differential equations.

The characteristic function of this system will then be an 8th

degree polynomial the coefficients of which will be functions

of the transform variable. For the problem to be analytically
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tractable it is essential that the roots of the characteristic

equation be obtainable in closed form. Apparently, for the

anisotropic shells in general and for the orthotropic shells

in particular this is not possible. In order to express the

roots in closed form the operators V14 and V24 must be properly

factorized. From (3) it is clear that these operators can

indeed be factorized and may be expressed in the following form

4 2 + E2/E1  2 2 (5)V 1 3 1 +V2 2 )  V2ax  ax2

provided the elastic constants satisfy the following conditions:

[v 2 + 2(1-v 1v 2) E-- 12] E1 /E 2 = 1

1

(2G 122 - 2 ) 
/ E 1/E 2 = 1 (6.a,b)

By direct substitution it may easily be shown that the conditions

(6) are satisfied if

(EIE 2 )
G (7)

12 2[l + (v1 2 ) ]

Considering also the relation (4.d), this means that the sheet

material has only three independent constants. Such a material

is said to be specially orthotropic. The results given in this

note will then be valid only for those materials in which the

measured value of G1 2 and that calculated from (7) in terms of

measured Ei and vi, (i=1,2) are in reasonably good agreement.

Changing the variables once more as
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x I = x , (E 1 /E 2 )4 x 2  y ,(8)

(5) becomes

2 2 24 4 = 4
V1 2  2 2) (9)

ax ay

With (9), (1) becomes identical to the differential equations

for isotropic shells in which D = Eh3/[12(1-v2)] and E are

replaced by D1 and E2, respectively. The problem may then be

solved by following, for example, the same procedure as that

described in [4] or [5] and will not be repeated here.

STRESS STATE AROUND THE CRACK TIP AND STRESS INTENSITY

FACTORS

Following very closely the technique described in [4], for

a pressurized shell the membrane and bending components of the

stresses in the close neighborhood of the crack tip may be

obtained as

m(rO,) = A 1 (5cos cos ) + 0(r 2 )
yy m 427 4 2 2

k 2 0
x (r,) =m P- c (3cos- + cos-) + 0(r ) ,

a (r,) = -- (sin - sin-2 ) + 0(r2) , (10.a-c)
xy m 2-4 2

Uyb(re,z) = Ab kp - [ - 5 8vo s2
yy 2V-(vo -8vc + c2 cos

2Vc cos ] + O(r )

2-4-
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xx b (r,,z) = Ab [k(8 + 8v c 2 + 3v2 )cos-
S [(8+c2 1 2 c +2

- 2 (1-v 2 c)cos5 ] + (r ) ,
4c

k a2h3G v
Sxyb(r,O,z) =A ap z 1 2  c sin 5

xy b h 12D 1  c2 2

- (8 + -c)sin ] + 0(r 2 ) , (ll.a-c)
C

where (r,O) are the polar coordinates at the crack tip, z is the

coordinate perpendicular to and measured from the neutral surface

of the shell, and

PoR 2
k p = a , c = (E 1 /E 2) = c -

p h1 1

h3G E h3
Vc = c 2 - ( + 3D 2 )  D2 = 2  )  (12)

c 3D2 2 12(1-v1v2 ) (12)

Here po is the internal pressure. Thus, kp is the corresponding

stress intensity factor in the flat plate, and Am and Ab repre-

sent stress intensity factor ratios defined by

Am = ks/k A kb/kp (13.a,b)m p b b p

where ks and ks are the membrane and bending components of the
m b

stress intensity factor in the shell.

NUMERICAL EXAMPLES

The elastic constants of the orthotropic shells which are

considered as examples are shown in Table 1. The Table also

shows the "average shear modulus" calculated from
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G E1 E2) (14)
av 2[1 + (v 1 v 2 ) ]

Table 1. Elastic Constants of the Materials

Titanium Graphite

El  (psi) 1.507x107 1.5x106

E2 (psi) 2.08x107 40xl06

V1 0.1966 0.0075

V2  0.2714 0.2000

G 6.78x106 4.0x106
12

Gav 7.15x106 3.73x106

Table 1 indicates that for the two materials under consid-

eration G1 2 and Gav are sufficiently close to justify the

assumption of special orthotropy. The calculated stress inten-

sity factor ratios based on this assumption are shown in Tables

2 and 3 and Figures 1-4. In the examples El is taken in the

axial direction. The tables also show the related (orthotropic)

shell parameter o0 calculated from

A0  = [12(1-v 1 2 )E2/E1 L]  a/(Rh) . (15)

Since Xo is dependent on the elastic constants, in comparing

the orthotropic results for different material orientation and

the results for the isotropic material, a/(hR) is used as the

independent variable.
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Table 2. The Stress Intensity Factor Ratios
for a Pressurized Titanium Cylinder

(E1 /E 2 ) = 0.724

x a/(Rh) Am Ab

1 0.5025 1.1962 0.1453

2 1.0050 1.6053 0.2645

3 1.5075 2.0795 0.3091

4 2.0100 2.5638 0.2853

5 2.5126 3.0419 0.1983

6 3.0151 3.5094 0.0590

7 3.5176 3.9648 -0.1255

8 4.0201 4.4081 -0.3493

(E1/E 2 ) = 1.380

1 0.5903 1.1962 0.2010

2 1.1807 1.6053 0.3643

3 1.7711 2.0794 0.4265

4 2.3615 2.5638 0.3927

5 2.9518 3.0420 0.2734

6 3.5422 3.5094 0.0808

7 4.1326 3.9649 -0.1743

8 4.7229 4.4082 -0.4835
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Table 3. The Stress Intensity Factor Ratios
for a Pressurized Graphite Cylinder

(E1/E 2 ) = 0.0375

x a/(Rh)2 Am Ab

1 0.2365 1.1928 0.0217

2 0.4730 1.5906 0.0464

3 0.7095 2.0493 0.0645

4 0.9460 2.5179 0.0726

5 1.1826 2.9818 0.0697

6 1.4191 3.4373 0.0564

7 1.6556 3.8833 0.0338

8 1.8922 4.3196 0.0027

(E1/E 2 ) = 26.66

1 1.2214 1.1928 0.5787

2 2.4428 1.5906 1.2393

3 3.6642 2.0493 1.7220

4 4.8856 2.5179 1.9368

5 6.1070 2.9818 1.8593

6 7.3284 3.4373 1.5049

7 8.5498 3.8833 0.9007

8 9.7712 4.3196 0.0726
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For the purpose of comparison, Figures 1-4 also show the

results for an isotropic shell (with a Poisson's ratio of 1/3)

which are given in [5]. It is seen that in the specially ortho-

tropic shells the stress intensity factors are strongly dependent

on the modulus ratio E1/E2 , and Am and Ab generally increase with

decreasing E1/E2 . However, this does not necessarily mean a

reduction in the resistance of the shell to cleavage as E1/E 2

decreases (i.e., as the shell becomes stiffer in circumferential

direction). For this, one also has to consider the fracture

strength of the shell in the plane parallel to E1 as a function

of E1/E2 . Intuitively, it is expected that this strength too

would increase as E1/E2 decreases.
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Figure 1. Membrane component of the stress intensity
factor ratio for a pressurized Titanium cylinder.
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Figure 2. Bending component of the stress intensity

factor ratio for a pressurized Titanium cylinder.
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Figure 3. Membrane component of the stress intensity
factor ratio for a pressurized Graphite cylinder.
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Figure 4. Bending component of the stress intensityfactor ratio for a pressurized Graphite cylinder.


